After the introduction to std::atomic_flag
in my last post Synchronization with Atomics in C++20, I want to dive deeper. Today, I create a ping-pong game using condition variables, std::atomic_flag
, and std::atomic<bool>
. Let's play.

The key question I want to answer in this post is the following: What is the fastest way to synchronize threads in C++20? I use in this post three different data types: std::condition_variable
, std::atomic_flag
, and std::atomic<bool>
.
To get comparable numbers, I implement a ping-pong game. One thread executes a ping
function and the other thread a pong
function. For simplicity reasons, I call the thread executing the ping
function the ping thread and the other thread the pong thread. The ping thread waits for the notification of the pong threads and sends the notification back to the pong thread. The game stops after 1,000,000 ball changes. I perform each game five times to get comparable performance numbers.
I made my performance test with the brand new Visual Studio compiler because it already supports synchronization with atomics. Additionally, I compiled the examples with maximum optimization (/Ox
).

Let me start with the C++11.
Condition Variables
// pingPongConditionVariable.cpp
#include <condition_variable>
#include <iostream>
#include <atomic>
#include <thread>
bool dataReady{false};
std::mutex mutex_;
std::condition_variable condVar1; // (1)
std::condition_variable condVar2; // (2)
std::atomic<int> counter{};
constexpr int countlimit = 1'000'000;
void ping() {
while(counter <= countlimit) {
{
std::unique_lock<std::mutex> lck(mutex_);
condVar1.wait(lck, []{return dataReady == false;});
dataReady = true;
}
++counter;
condVar2.notify_one(); // (3)
}
}
void pong() {
while(counter < countlimit) {
{
std::unique_lock<std::mutex> lck(mutex_);
condVar2.wait(lck, []{return dataReady == true;});
dataReady = false;
}
condVar1.notify_one(); // (3)
}
}
int main(){
auto start = std::chrono::system_clock::now();
std::thread t1(ping);
std::thread t2(pong);
t1.join();
t2.join();
std::chrono::duration<double> dur = std::chrono::system_clock::now() - start;
std::cout << "Duration: " << dur.count() << " seconds" << std::endl;
}
I use two condition variables in the program: condVar1
and condVar2
(line 1 and 2). The ping thread wait for the notification of condVar1
and sends its notification with condVar2
. dataReady
protects against spurious and lost wakeups (see "C++ Core Guidelines: Be Aware of the Traps of Condition Variables"). The ping-pong game ends when counter
reaches the countlimit
. The nofication_one
calls (lines 3) and the counter are thread-safe and are, therefore, outside the critical region.
Here are the numbers:

The average execution time is 0.52 seconds.
Porting this play to std::atomic_flags
's in C++20 is straightforward.
std::atomic_flag
Here is the play using two atomic flags.
Two Atomic Flags
In the following program, I replace the waiting on the condition variable with the waiting on the atomic flag and the notification of the condition variable with the setting of the atomic flag followed by the notification.
// pingPongAtomicFlags.cpp
#include <iostream>
#include <atomic>
#include <thread>
std::atomic_flag condAtomicFlag1{};
std::atomic_flag condAtomicFlag2{};
std::atomic<int> counter{};
constexpr int countlimit = 1'000'000;
void ping() {
while(counter <= countlimit) {
condAtomicFlag1.wait(false); // (1)
condAtomicFlag1.clear(); // (2)
++counter;
condAtomicFlag2.test_and_set(); // (4)
condAtomicFlag2.notify_one(); // (3)
}
}
void pong() {
while(counter < countlimit) {
condAtomicFlag2.wait(false);
condAtomicFlag2.clear();
condAtomicFlag1.test_and_set();
condAtomicFlag1.notify_one();
}
}
int main() {
auto start = std::chrono::system_clock::now();
condAtomicFlag1.test_and_set(); // (5)
std::thread t1(ping);
std::thread t2(pong);
t1.join();
t2.join();
std::chrono::duration<double> dur = std::chrono::system_clock::now() - start;
std::cout << "Duration: " << dur.count() << " seconds" << std::endl;
}
A call condAtomicFlag1.wait(false)
(1) blocks, if the value of the atomic flag is false
. On the contrary, it returns if condAtomicFlag1
has the value true
. The boolean value serves as a kind of predicate and must, therefore, set back to false
(2). Before the notification (3) is sent to the pong thread, condAtomicFlag1
is set to true
(4). The initial setting of condAtomicFlag1
to true
(5) starts the game.
Thanks to std::atomic_flag
the game ends earlier.

On average, a game takes 0.32 seconds.
When you analyze the program, you may recognize, that one atomics flag is sufficient for the play.
One Atomic Flag
Using one atomic flag makes the play easier to understand.
// pingPongAtomicFlag.cpp
#include <iostream>
#include <atomic>
#include <thread>
std::atomic_flag condAtomicFlag{};
std::atomic<int> counter{};
constexpr int countlimit = 1'000'000;
void ping() {
while(counter <= countlimit) {
condAtomicFlag.wait(true);
condAtomicFlag.test_and_set();
++counter;
condAtomicFlag.notify_one();
}
}
void pong() {
while(counter < countlimit) {
condAtomicFlag.wait(false);
condAtomicFlag.clear();
condAtomicFlag.notify_one();
}
}
int main() {
auto start = std::chrono::system_clock::now();
condAtomicFlag.test_and_set();
std::thread t1(ping);
std::thread t2(pong);
t1.join();
t2.join();
std::chrono::duration<double> dur = std::chrono::system_clock::now() - start;
std::cout << "Duration: " << dur.count() << " seconds" << std::endl;
}
In this case, the ping thread blocks on true
but the pong thread blocks on false
. From the performance perspective, using one or two atomic flags makes no difference.

The average execution time is 0.31 seconds.
I used in this example std::atomic_flag
such as an atomic boolean. Let's give it another try with std::atomic<bool>
.
std::atomic<bool>
From the readability perspective, I prefer the following C++20 implementation based on std::atomic<bool>.
// pingPongAtomicBool.cpp
#include <iostream>
#include <atomic>
#include <thread>
std::atomic<bool> atomicBool{};
std::atomic<int> counter{};
constexpr int countlimit = 1'000'000;
void ping() {
while(counter <= countlimit) {
atomicBool.wait(true);
atomicBool.store(true);
++counter;
atomicBool.notify_one();
}
}
void pong() {
while(counter < countlimit) {
atomicBool.wait(false);
atomicBool.store(false);
atomicBool.notify_one();
}
}
int main() {
std::cout << std::boolalpha << std::endl;
std::cout << "atomicBool.is_lock_free(): " // (1)
<< atomicBool.is_lock_free() << std::endl;
std::cout << std::endl;
auto start = std::chrono::system_clock::now();
atomicBool.store(true);
std::thread t1(ping);
std::thread t2(pong);
t1.join();
t2.join();
std::chrono::duration<double> dur = std::chrono::system_clock::now() - start;
std::cout << "Duration: " << dur.count() << " seconds" << std::endl;
}
std::atomic<bool>
can internally use a locking mechanism such as a mutex. As I assumed it, my Windows runtime is lock-free (1).

On average, the execution time is 0.38 seconds.
All Numbers
As expected, condition variables are the slowest way, and atomic flag the fastest way to synchronize threads. The performance of a std::atomic<bool>
is in-between. But there is one downside with std:.atomic<bool>. std::atomic_flag i
s the only atomic data type which is lock-free.

What's next?
With C++20, we have a few new mechanisms for thread coordination. In my next post, I will take a deeper view into latches, barriers, and semaphores. They also allow it to play Ping-Pong.
Thanks a lot to my Patreon Supporters: Matt Braun, Roman Postanciuc, Tobias Zindl, Marko, G Prvulovic, Reinhold Dröge, Abernitzke, Frank Grimm, Sakib, Broeserl, António Pina, Darshan Mody, Sergey Agafyin, Андрей Бурмистров, Jake, GS, Lawton Shoemake, Animus24, Jozo Leko, John Breland, espkk, Wolfgang Gärtner, Louis St-Amour, Stephan Roslen, Venkat Nandam, Jose Francisco, Douglas Tinkham, Kuchlong Kuchlong, Avi Kohn, Robert Blanch, Truels Wissneth, Kris Kafka, Mario Luoni, Neil Wang, Friedrich Huber, lennonli, Pramod Tikare Muralidhara, and Peter Ware.
Thanks in particular to Jon Hess, Lakshman, Christian Wittenhorst, Sherhy Pyton, Dendi Suhubdy, and Sudhakar Belagurusamy.
Seminars
I'm happy to give online-seminars or face-to-face seminars world-wide. Please call me if you have any questions.
Bookable (Online)
Deutsch
Standard Seminars
Here is a compilation of my standard seminars. These seminars are only meant to give you a first orientation.
New
Contact Me
Modernes C++,

Comments
I know the condition_variable solution, at least on Linux, does not use a busy wait loop. But do the other solutions avoid busy waits as well? This is critical in the code I write.
I never thought about a busy wait. I assume that a synchronization mechanism first makes a short spinning wait (busy wait) and then goes into the kernel and falls asleep. You can easily observe a busy wait. Let the condition variable wait and look at your CPU. One of the cores must go to 100 %.
No, I'm a Linux person. So far, only windows supports the C++20 atomics. This includes also latches, barriers, and semaphores.
Thanks!!!
RSS feed for comments to this post