TimelineCpp20CoreLanguage

Performance Comparison of Condition Variables and Atomics in C++20

After the introduction to std::atomic_flag in my last post, Synchronization with Atomics in C++20, I want to dive deeper. Today, I created a ping-pong game using condition variables, std::atomic_flag and std::atomic<bool>. Let’s play.

 TimelineCpp20CoreLanguage

The key question I want to answer in this post is: What is the fastest way to synchronize threads in C++20? I use in this post three different data types: std::condition_variable, std::atomic_flag, and std::atomic<bool>.

To get comparable numbers, I implement a ping-pong game. One thread executes a ping function, and the other thread a pong function. For simplicity reasons, I call the thread executing the ping function the ping thread and the other thread the pong thread. The ping thread waits for the notification of the pong threads and returns the notification to the pong thread. The game stops after 1,000,000 ball changes. I perform each game five times to get comparable performance numbers.

I made my performance test with the brand new Visual Studio compiler because it already supports synchronization with atomics. Additionally, I compiled the examples with maximum optimization (/Ox).

windowsCompiler

 

Rainer D 6 P2 500x500Modernes C++ Mentoring

Be part of my mentoring programs:

  • "Fundamentals for C++ Professionals" (open)
  • "Design Patterns and Architectural Patterns with C++" (open)
  • "C++20: Get the Details" (open)
  • "Concurrency with Modern C++" (starts March 2024)
  • Do you want to stay informed: Subscribe.

     

    Let me start with C++11.

    Condition Variables

     

    // pingPongConditionVariable.cpp
    
    #include <condition_variable>
    #include <iostream>
    #include <atomic>
    #include <thread>
    
    bool dataReady{false};
    
    std::mutex mutex_;
    std::condition_variable condVar1;          // (1)
    std::condition_variable condVar2;          // (2)
    
    std::atomic<int> counter{};
    constexpr int countlimit = 1'000'000;
    
    void ping() {
    
        while(counter <= countlimit) {
            {
                std::unique_lock<std::mutex> lck(mutex_);
                condVar1.wait(lck, []{return dataReady == false;});
                dataReady = true;
            }
            ++counter;                          
            condVar2.notify_one();              // (3)
      }
    }
    
    void pong() {
    
        while(counter < countlimit) {  
            {
                std::unique_lock<std::mutex> lck(mutex_);
                condVar2.wait(lck, []{return dataReady == true;});
                dataReady = false;
            }
            condVar1.notify_one();            // (3)
      }
    
    }
    
    int main(){
    
        auto start = std::chrono::system_clock::now();  
    
        std::thread t1(ping);
        std::thread t2(pong);
    
        t1.join();
        t2.join();
      
        std::chrono::duration<double> dur = std::chrono::system_clock::now() - start;
        std::cout << "Duration: " << dur.count() << " seconds" << std::endl;
    
    }
    

     

    I use two condition variables in the program: condVar1 and condVar2 (lines 1 and 2). The ping thread waits for the notification of condVar1 and sends its notification with condVar2. dataReady protects against spurious and lost wakeups (see “C++ Core Guidelines: Be Aware of the Traps of Condition Variables“). The ping-pong game ends when counter reaches the countlimit. The nofication_one calls (lines 3) and the counter are thread-safe and are, therefore, outside the critical region.

    Here are the numbers:

    pingPongConditionVariable

    The average execution time is 0.52 seconds.

    Porting this play to std::atomic_flags‘s in C++20 is straightforward.

    std::atomic_flag

    Here is the play using two atomic flags.

    Two Atomic Flags

    In the following program, I replace the waiting on the condition variable with the waiting on the atomic flag and the notification of the condition variable with the setting of the atomic flag followed by the notification.

    // pingPongAtomicFlags.cpp
    
    #include <iostream>
    #include <atomic>
    #include <thread>
    
    std::atomic_flag condAtomicFlag1{};
    std::atomic_flag condAtomicFlag2{};
    
    std::atomic<int> counter{};
    constexpr int countlimit = 1'000'000;
    
    void ping() {
        while(counter <= countlimit) {
            condAtomicFlag1.wait(false);               // (1)
            condAtomicFlag1.clear();                   // (2)
    
            ++counter;
            
            condAtomicFlag2.test_and_set();           // (4)
            condAtomicFlag2.notify_one();             // (3)
        }
    }
    
    void pong() {
        while(counter < countlimit) {
            condAtomicFlag2.wait(false);
            condAtomicFlag2.clear();
            
            condAtomicFlag1.test_and_set();
            condAtomicFlag1.notify_one();
        }
    }
    
    int main() {
    
         auto start = std::chrono::system_clock::now();  
    
        condAtomicFlag1.test_and_set();                    // (5)
        std::thread t1(ping);
        std::thread t2(pong);
    
        t1.join();
        t2.join();
    
        std::chrono::duration<double> dur = std::chrono::system_clock::now() - start;
        std::cout << "Duration: " << dur.count() << " seconds" << std::endl;
    
    }
    

     

    A call condAtomicFlag1.wait(false) (1) blocks, if the value of the atomic flag is false. On the contrary, it returns if condAtomicFlag1 has the value true. The boolean value serves as a kind of predicate and must, therefore, be set back to false (2). Before the notification (3) is sent to the pong thread, condAtomicFlag1 is set to true (4). The initial setting of condAtomicFlag1 to true (5) starts the game.

    Thanks to std::atomic_flag the game end earlier.

    pingPongAtomicFlags

    On average, a game takes 0.32 seconds.

    When you analyze the program, you may recognize that one atomics flag is sufficient for the play.

    One Atomic Flag

    Using one atomic flag makes the play easier to understand.

     

    // pingPongAtomicFlag.cpp
    
    #include <iostream>
    #include <atomic>
    #include <thread>
    
    std::atomic_flag condAtomicFlag{};
    
    std::atomic<int> counter{};
    constexpr int countlimit = 1'000'000;
    
    void ping() {
        while(counter <= countlimit) {
            condAtomicFlag.wait(true);
            condAtomicFlag.test_and_set();
            
            ++counter;
            
            condAtomicFlag.notify_one();
        }
    }
    
    void pong() {
        while(counter < countlimit) {
            condAtomicFlag.wait(false);
            condAtomicFlag.clear();
            condAtomicFlag.notify_one();
        }
    }
    
    int main() {
    
         auto start = std::chrono::system_clock::now();  
    
        
        condAtomicFlag.test_and_set();
        std::thread t1(ping);
        std::thread t2(pong);
    
        t1.join();
        t2.join();
    
        std::chrono::duration<double> dur = std::chrono::system_clock::now() - start;
        std::cout << "Duration: " << dur.count() << " seconds" << std::endl;
    
    }
    

     

    In this case, the ping thread blocks on true but the pong thread blocks on false. Using one or two atomic flags make no difference from the performance perspective.

     pingPongAtomicFlag

    The average execution time is 0.31 seconds.

     I used in this example std::atomic_flag such as an atomic boolean. Let’s give it another try with std::atomic<bool>.

    std::atomic<bool>

    From the readability perspective, I prefer the following C++20 implementation based on std::atomic<bool>.

     

    // pingPongAtomicBool.cpp
    
    #include <iostream>
    #include <atomic>
    #include <thread>
    
    std::atomic<bool> atomicBool{};
    
    std::atomic<int> counter{};
    constexpr int countlimit = 1'000'000;
    
    void ping() {
        while(counter <= countlimit) {
            atomicBool.wait(true);
            atomicBool.store(true);
    
            ++counter;
            
            atomicBool.notify_one();
        }
    }
    
    void pong() {
        while(counter < countlimit) {
            atomicBool.wait(false);
            atomicBool.store(false);
            atomicBool.notify_one();
        }
    }
    
    int main() {
    
        std::cout << std::boolalpha << std::endl;
    
        std::cout << "atomicBool.is_lock_free(): "              // (1)
                  << atomicBool.is_lock_free()  << std::endl; 
    
        std::cout << std::endl;
    
        auto start = std::chrono::system_clock::now();
    
        atomicBool.store(true);
        std::thread t1(ping);
        std::thread t2(pong);
    
        t1.join();
        t2.join();
    
        std::chrono::duration<double> dur = std::chrono::system_clock::now() - start;
        std::cout << "Duration: " << dur.count() << " seconds" << std::endl;
    
    }
    

     

    std::atomic<bool> can internally use a locking mechanism such as a mutex. As I assumed, my Windows runtime is lock-free (1).

    pingPongAtomicBool

    On average, the execution time is 0.38 seconds.

    All Numbers

    As expected, condition variables are the slowest way, and atomic flag is the fastest way to synchronize threads. The performance of a std::atomic<bool> is in-between.

    PerformanceComparison

    What’s next?

    With C++20, we have a few new mechanisms for thread coordination. In my next post, I will look deeper into latches, barriers, and semaphores. They also allow it to play Ping-Pong.

     

     

     

     

     

    Thanks a lot to my Patreon Supporters: Matt Braun, Roman Postanciuc, Tobias Zindl, G Prvulovic, Reinhold Dröge, Abernitzke, Frank Grimm, Sakib, Broeserl, António Pina, Sergey Agafyin, Андрей Бурмистров, Jake, GS, Lawton Shoemake, Jozo Leko, John Breland, Venkat Nandam, Jose Francisco, Douglas Tinkham, Kuchlong Kuchlong, Robert Blanch, Truels Wissneth, Kris Kafka, Mario Luoni, Friedrich Huber, lennonli, Pramod Tikare Muralidhara, Peter Ware, Daniel Hufschläger, Alessandro Pezzato, Bob Perry, Satish Vangipuram, Andi Ireland, Richard Ohnemus, Michael Dunsky, Leo Goodstadt, John Wiederhirn, Yacob Cohen-Arazi, Florian Tischler, Robin Furness, Michael Young, Holger Detering, Bernd Mühlhaus, Stephen Kelley, Kyle Dean, Tusar Palauri, Dmitry Farberov, Juan Dent, George Liao, Daniel Ceperley, Jon T Hess, Stephen Totten, Wolfgang Fütterer, Matthias Grün, Phillip Diekmann, Ben Atakora, Ann Shatoff, Rob North, Bhavith C Achar, Marco Parri Empoli, moon, Philipp Lenk, Hobsbawm, and Charles-Jianye Chen.

    Thanks, in particular, to Jon Hess, Lakshman, Christian Wittenhorst, Sherhy Pyton, Dendi Suhubdy, Sudhakar Belagurusamy, Richard Sargeant, Rusty Fleming, John Nebel, Mipko, Alicja Kaminska, Slavko Radman, and David Poole.

    My special thanks to Embarcadero
    My special thanks to PVS-Studio
    My special thanks to Tipi.build 
    My special thanks to Take Up Code
    My special thanks to SHAVEDYAKS

    Seminars

    I’m happy to give online seminars or face-to-face seminars worldwide. Please call me if you have any questions.

    Standard Seminars (English/German)

    Here is a compilation of my standard seminars. These seminars are only meant to give you a first orientation.

    • C++ – The Core Language
    • C++ – The Standard Library
    • C++ – Compact
    • C++11 and C++14
    • Concurrency with Modern C++
    • Design Pattern and Architectural Pattern with C++
    • Embedded Programming with Modern C++
    • Generic Programming (Templates) with C++
    • Clean Code with Modern C++
    • C++20

    Online Seminars (German)

    Contact Me

    Modernes C++ Mentoring,

     

     

    5 replies
    1. Ted.Tang
      Ted.Tang says:

      I run your code and find the program may block forever.

      Take the code in pingPongAtomicBool.cpp for instance, and let countlimit = 1 wo make it easier.

      The ping thread must iterate twice before exiting, however, the pond thread may iterate only once if the following running sequence happens:
      pong: checks while condition, gets true
      pong: atomicBool.wait(false);
      pong: atomicBool.store(false);
      pong: atomicBool.notify_one();
      ping: checks while condition, gets true
      ping: atomicBool.wait(true);
      ping: atomicBool.store(true);
      ping: ++counter
      ping: atomicBool.notify_one();
      pong: loads counter and gets 1, exits the loop, no more stores false to atomicBool
      ping: atomicBool.wait(true) never returns

      Reply
        • ries
          ries says:

          I am pretty sure that there is no guarantee that thread1 starts first, it could also bee that thread2 starts first. If you want thread1 to start first, then you need to synchronise them.

          Reply
    2. Tony
      Tony says:

      Hi,

      I run the code both on Windows MSVC and Linux GCC, with a huge performance variance.

      Condition variable is much slower on Linux (9s) than that on Windows.(0.55s)
      I cannot figure out what is going on here.

      Many thanks

      Reply

    Leave a Reply

    Want to join the discussion?
    Feel free to contribute!

    Leave a Reply

    Your email address will not be published. Required fields are marked *