Asynchronous Function Calls

Contents[Show]

std:.async feels like an asynchronous function call. Under the hood std::async is a task. One, which is extremely easy to use.

std::async

std::async gets a callable as a work package. In this example, it's a function, a function object, or a lambda function. 

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
// async.cpp

#include <future>
#include <iostream>
#include <string>

std::string helloFunction(const std::string& s){
  return "Hello C++11 from " + s + ".";
}

class HelloFunctionObject{
  public:
    std::string operator()(const std::string& s) const {
      return "Hello C++11 from " + s + ".";
    }
};

int main(){

  std::cout << std::endl;

  // future with function
  auto futureFunction= std::async(helloFunction,"function");

  // future with function object
  HelloFunctionObject helloFunctionObject;
  auto futureFunctionObject= std::async(helloFunctionObject,"function object");

  // future with lambda function
  auto futureLambda= std::async([](const std::string& s ){return "Hello C++11 from " + s + ".";},"lambda function");

  std::cout << futureFunction.get() << "\n" 
	    << futureFunctionObject.get() << "\n" 
	    << futureLambda.get() << std::endl;

  std::cout << std::endl;

}

 

The program execution is not so exciting.

 async

The future gets a function (line23), a function object (line 27) and a lambda function (line 30). In the end, each future request its value (line 32).

And again, a little bit more formal. The std::async calls in lines 23, 27, and 30 create a data channel between the two endpoints' future and promise. The promise immediately starts to execute its work package. But that is only the default behavior. By the get call, the future requests the result of Its work packages.

 

Rainer D 6 P2 540x540Modernes C++ Mentoring

Stay informed about my mentoring programs.

 

 

Subscribe via E-Mail.

Eager or lazy evaluation

Eager or lazy evaluation are two orthogonal strategies, to calculate the result of an expression. In the case of eager evaluation, the expression will immediately be evaluated, in the case of lazy evaluation, the expression will only be evaluated if needed. Often lazy evaluation is called call-by-need. With lazy evaluation, you save time and compute power, because there is no evaluation on suspicion. An expression can be a mathematical calculation, a function, or a std::async call. 

By default, std::async executed immediately its work package. The C++ runtime decides if the calculation happens in the same or a new thread. With the flag std::launch::async std::async will run its work package in a new thread. In opposite to that, the flag std::launch::deferred expresses, that std::async runs in the same thread. The execution is in this case lazy. That implies, that the eager evaluations start immediately, but the lazy evaluation with the policy std::launch::deferred starts, when the future asks for the value with its get call. 

The program shows the different behavior.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
// asyncLazy.cpp

#include <chrono>
#include <future>
#include <iostream>

int main(){

  std::cout << std::endl;

  auto begin= std::chrono::system_clock::now();

  auto asyncLazy=std::async(std::launch::deferred,[]{ return  std::chrono::system_clock::now();});

  auto asyncEager=std::async( std::launch::async,[]{ return  std::chrono::system_clock::now();});

  std::this_thread::sleep_for(std::chrono::seconds(1));

  auto lazyStart= asyncLazy.get() - begin;
  auto eagerStart= asyncEager.get() - begin;

  auto lazyDuration= std::chrono::duration<double>(lazyStart).count();
  auto eagerDuration=  std::chrono::duration<double>(eagerStart).count();

  std::cout << "asyncLazy evaluated after : " << lazyDuration << " seconds." << std::endl;
  std::cout << "asyncEager evaluated after: " << eagerDuration << " seconds." << std::endl;

  std::cout << std::endl;

}

 

Both std::async calls (lines 13 and 15) return the current time point. But the first call is lazy, the second greedy. The short sleep of one second in line 17 makes that obvious. By the call asyncLazy.get() in line 19, the result will be available after a short nap.  This is not true for asyncEager. asyncEager.get() gets the result from the immediately executed work package.

asyncLazy

A bigger compute job

std::async is quite convenient, to put a bigger compute job on more shoulders. So, the calculation of the scalar product is done in the program with four asynchronous function calls.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
// dotProductAsync.cpp

#include <chrono>
#include <iostream>
#include <future>
#include <random>
#include <vector>
#include <numeric>

static const int NUM= 100000000;

long long getDotProduct(std::vector<int>& v, std::vector<int>& w){

  auto future1= std::async([&]{return std::inner_product(&v[0],&v[v.size()/4],&w[0],0LL);});
  auto future2= std::async([&]{return std::inner_product(&v[v.size()/4],&v[v.size()/2],&w[v.size()/4],0LL);});
  auto future3= std::async([&]{return std::inner_product(&v[v.size()/2],&v[v.size()*3/4],&w[v.size()/2],0LL);});
  auto future4= std::async([&]{return std::inner_product(&v[v.size()*3/4],&v[v.size()],&w[v.size()*3/4],0LL);});

  return future1.get() + future2.get() + future3.get() + future4.get();
}


int main(){

  std::cout << std::endl;

  // get NUM random numbers from 0 .. 100
  std::random_device seed;

  // generator
  std::mt19937 engine(seed());

  // distribution
  std::uniform_int_distribution<int> dist(0,100);

  // fill the vectors
  std::vector<int> v, w;
  v.reserve(NUM);
  w.reserve(NUM);
  for (int i=0; i< NUM; ++i){
    v.push_back(dist(engine));
    w.push_back(dist(engine));
  }

  // measure the execution time
  std::chrono::system_clock::time_point start = std::chrono::system_clock::now();
  std::cout << "getDotProduct(v,w): " << getDotProduct(v,w) << std::endl;
  std::chrono::duration<double> dur  = std::chrono::system_clock::now() - start;
  std::cout << "Parallel Execution: "<< dur.count() << std::endl;

  std::cout << std::endl;

}

 

The program uses the functionality of the random and time library. Both libraries are part of C++11. The two vectors v and w are created and filled with a random number in lines 27 - 43.  Each of the vectors gets (line 40 - 43) a hundred million elements. dist(engine) in lines 41 and 42 generated the random numbers, which are uniformly distributed in the range from 0 to 100. The current calculation of the scalar product takes place in the function getDotProduct (lines 12 - 20). std::async uses internally the standard template library algorithm std::inner_product. The return statement sums up the results of the futures.

It takes about 0.4 seconds to calculate the result on my PC.

dotProductAsync

But now the question is. How fast is the program, if I executed it on one core? A small modification of the function getDotProduct and we know the truth.


long
long getDotProduct(std::vector<int>& v,std::vector<int>& w){ return std::inner_product(v.begin(),v.end(),w.begin(),0LL); }

 

The execution of the program is four times slower.

 

dotProduct

Optimization

But, if I compile the program with maximal optimization level O3 with my GCC, the performance difference is nearly gone. The parallel execution is about 10 percent faster.

 

dotProductComparisonOptimization

What's next?

In the next post, I show you, how to parallelize a big compute job by using std::packaged_task. (Proofreader Alexey Elymanov)

 

 

 

 

 

Thanks a lot to my Patreon Supporters: Matt Braun, Roman Postanciuc, Tobias Zindl, G Prvulovic, Reinhold Dröge, Abernitzke, Frank Grimm, Sakib, Broeserl, António Pina, Sergey Agafyin, Андрей Бурмистров, Jake, GS, Lawton Shoemake, Animus24, Jozo Leko, John Breland, Venkat Nandam, Jose Francisco, Douglas Tinkham, Kuchlong Kuchlong, Robert Blanch, Truels Wissneth, Kris Kafka, Mario Luoni, Friedrich Huber, lennonli, Pramod Tikare Muralidhara, Peter Ware, Daniel Hufschläger, Alessandro Pezzato, Bob Perry, Satish Vangipuram, Andi Ireland, Richard Ohnemus, Michael Dunsky, Leo Goodstadt, John Wiederhirn, Yacob Cohen-Arazi, Florian Tischler, Robin Furness, Michael Young, Holger Detering, Bernd Mühlhaus, Matthieu Bolt, Stephen Kelley, Kyle Dean, Tusar Palauri, Dmitry Farberov, Juan Dent, George Liao, Daniel Ceperley, Jon T Hess, Stephen Totten, Wolfgang Fütterer, Matthias Grün, Phillip Diekmann, Ben Atakora, and Ann Shatoff.

 

Thanks in particular to Jon Hess, Lakshman, Christian Wittenhorst, Sherhy Pyton, Dendi Suhubdy, Sudhakar Belagurusamy, Richard Sargeant, Rusty Fleming, John Nebel, Mipko, Alicja Kaminska, and Slavko Radman.

 

 

My special thanks to Embarcadero CBUIDER STUDIO FINAL ICONS 1024 Small

 

My special thanks to PVS-Studio PVC Logo

 

My special thanks to Tipi.build tipi.build logo

Seminars

I'm happy to give online seminars or face-to-face seminars worldwide. Please call me if you have any questions.

Bookable (Online)

German

Standard Seminars (English/German)

Here is a compilation of my standard seminars. These seminars are only meant to give you a first orientation.

  • C++ - The Core Language
  • C++ - The Standard Library
  • C++ - Compact
  • C++11 and C++14
  • Concurrency with Modern C++
  • Design Pattern and Architectural Pattern with C++
  • Embedded Programming with Modern C++
  • Generic Programming (Templates) with C++

New

  • Clean Code with Modern C++
  • C++20

Contact Me

Modernes C++,

RainerGrimmDunkelBlauSmall

 

Tags: async, Tasks

Comments   

+1 #11 Gerardo 2017-09-03 05:45
I would like to thank youu for the efforts you've put in penningg this blog.
I'mhoping to check out the same high-grade content by you in the future
ass well. In truth, your creative wrioting abilities has motivated me to get my very own website now ;)
Quote
0 #12 Pranabesh Das 2018-02-18 05:59
getDotProduct --> std::inner_product call results the following error in VS 2017:

Severity Code Description Project File Line Suppression State
Error C4996 'std::inner_product::_Unchecked_iterators::_Deprecate': Call to 'std::inner_product' with parameters that may be unsafe - this call relies on the caller to check that the passed values are correct. To disable this warning, use -D_SCL_SECURE_NO_WARNINGS. See documentation on how to use Visual C++ 'Checked Iterators' Tasks d:\program files (x86)\microsoft visual studio\2017\community\vc\tools\msvc\14.12.25827\in clude\numeric 164
Quote
+2 #13 Rainer Grimm 2018-02-19 15:42
Quoting Pranabesh Das:
getDotProduct --> std::inner_product call results the following error in VS 2017:

Severity Code Description Project File Line Suppression State
Error C4996 'std::inner_product::_Unchecked_iterators::_Deprecate': Call to 'std::inner_product' with parameters that may be unsafe - this call relies on the caller to check that the passed values are correct. To disable this warning, use -D_SCL_SECURE_NO_WARNINGS. See documentation on how to use Visual C++ 'Checked Iterators' Tasks d:\program files (x86)\microsoft visual studio\2017\community\vc\tools\msvc\14.12.25827\include\numeric 164

Visual Studio makes this check only in debug mode. Let it run in release mode and it works fine.

Here is an explanation: https://stackoverflow.com/questions/16883037/remove-secure-warnings-crt-secure-no-warnings-from-projects-by-default-in-vis
Quote

Mentoring

Stay Informed about my Mentoring

 

English Books

Course: Modern C++ Concurrency in Practice

Course: C++ Standard Library including C++14 & C++17

Course: Embedded Programming with Modern C++

Course: Generic Programming (Templates)

Course: C++ Fundamentals for Professionals

Interactive Course: The All-in-One Guide to C++20

Subscribe to the newsletter (+ pdf bundle)

All tags

Blog archive

Source Code

Visitors

Today 2829

Yesterday 5317

Week 2829

Month 147000

All 11628154

Currently are 245 guests and no members online

Kubik-Rubik Joomla! Extensions

Latest comments